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Evolution of a gauge-invariant measure of the isocharge in the 
far field of a 'tHooft-Polyakov monopole 

Ronald E Katest§ and Arnold Rosenblum$ll 
t Department of Physics, Clarkson University, Potsdam, NY 13676, USA 
t Department of Physics, Temple University, Philadelphia, PA 19122, USA 
and International Institute of Theoretical Physics, Utah State University, Logan, Utah, USA 

Received 7 March 1985 

Abstract. We consider the dynamics of a point-like SU(2) isocharge which creates a weak 
disturbance in the field of a 'tHooft-Polyakov monopole. We introduce a local, gauge- 
invariant measure of the isocharge, and we compute its evolution, for various motions, to 
leading order in a small paramter E ,  where E measures the weakness of the disturbance. 
In contrast to ordinary electromagnetic charge, the gauge-invariant isocharge need not 
remain constant, but rather undergoes a net change, for certain motions, as a result of its 
interaction with the monopole. 

1. Introduction and statement of the problem 

Despite the importance of non-Abelian monopoles in elementary particle physics, 
relatively little is known about the two-body problem. Motion and radiation reaction 
in non-Abelian gauge theories have been studied by various authors, including 
Drechsler, Havas, Kates and Rosenblum [ 1-41 (and papers cited therein), but progress 
on the dynamics of classical non-Abelian monopoles has been slow, due to the nonlinear 
nature of the problem. 

A significant issue in classical Yang-Mills theories has been the construction of a 
gauge-invariant measure for the isocharge associated with a particular Yang-Mills 
field configuration. The definitions of isocharge given in the literature [5-91 depend 
on asymptotic properties of the fields and do not lend themselves to a local interpreta- 
tion. In the present problem, we will be interested in the time evolution of a point-like 
isocharge moving along various worldlines r( 7) and interacting with a monopole-like 
object. The introduction of a Higgs field [lo] @" provides a preferred direction in the 
local SU(2) fibre or 'isospace', as we will call it here. If the current of our moving 
isocharge is assumed to take the point-like form 

c 

then the quantity q = q"@"lr is independent of gauge. (Spacetime indices are designated 
by Greek letters; group and spatial indices by Latin ones.) 
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The classical SU(2) Yang-Mills-Higgs theory [ 11, 121 

2=  -aG~,G",'"+S(D,@")(D,@")-aA(@"@" -F2)2-4~j:Aacl (1.2) 

GEy a,A: -aJa ,  + gEabcApbAyc D,@" =a,@" + gEnbcAbp@c (1.3) 
with field equations 

and covariant charge current identities 

has a well known class of solutions [13,14] 

X a  
@" = - F(  r) 

r 

2 
Aai = W( r )  (1.9) 

AaO = 0 (1.10) 

where W(r) and F ( r )  have the asymptotic forms [15,12] 

(1.11) 

(1.12) 

The monopole is of course a solution of the homogeneous system. This field represents 
a magnetic monopole of (magnetic) charge l /g  centred at the origin. In particular, 
in the 'limit' A + 0, the functions W( r )  and F (  r) can be found analytically [ 161: 

1 F 
gr sinh(gFr) W(r) =-- (1.13) 

F 1 
tanh(gFr) -&' F( r )  = (1.14) 

For any A, the monopole exhibits a characteristic reference length l/(gF). Without 
loss of generality, let us choose a system of coordinates in which g = 1, F = 1, which 
means that distances are measured in units of l / (gF)  and charges in units of l /g.  

Consider now a disturbance generated by the addition of a small point-like 
isocharge. By 'small' isocharge, we mean that the charge-current vector can be written 
in the form 

m 

j"" = E Q""(7)S4(xW -RF(7) )  d~ (1.15) 

Q a w (  7) = Q"( 7) v'( T )  [ V @ ( T ) = ~ R ~ ( T ) / ~ T ]  (1.16) 
where E is a small, dimensionless parameter. Our assumption of a 'small' isocharge 
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leads us to seek asymptotic expansions of the fields in the form 

AaP - Ma" + ET" +. 
@"P -I"+ E + " + .  . . 

(1.17) 

(1.18) 

where M a p  and f" represent the unperturbed 'tHooft-Polyakov [ 13,141 solution 
expressed in our non-dimensionalised coordinates, i.e. 

(1.19) 
X" 

f" =- F ( r )  
r 

XJ 

r 
Ma' = E,,, - W( r )  

M a o  = 0. 

The asymptotic behaviour of W and F is given by 

(1.20) 

(1.21) 

(1.22) 
1 
r 

W + - - A. exp( - r )  ( r + a ) )  

F-, 1 - ( D ~ /  r )  exp( - JG r )  ( r + a >  (1.23) 

where A. and Do are constants. The isocharge Q"( T) is regarded as depending implicitly 
on E.  (Such expansions will of course be non-uniform near the singular worldline. 
Several techniques, such as Riesz potentials [4] and matched asymptotic expansions 
[17], could be applied to study this region more closely, but for the purposes of this 
paper one can do without them.) Our procedure will be to substitute these expansions 
in the field equations (1.4) and (1.5) and the covariant current conservation identity 
(1.6) and to collect terms of like power in E.  The zeroth order is of course satisfied 
identically by the 'tHooft-Polyakov [ 14,151 solutions. The O( E )  terms give linear 
equations for Taw and +" as well as the O ( E )  covariant current conservation identity 

a,j""+ MbujcyEabc = 0. (1.24) 

However, the results of this section do not in fact require the direct application of the 
O( E )  field equations (1.4), but only of their consequence, the covariant current conserva- 
tion identity (1.6). (The neglect of terms beyond O( E )  in this paper means physically 
that we are neglecting the non-Abelian interaction of the disturbance with itself, but 
including its interaction with the monopole.) 

2. Evolution of gauge-invariant isocharge 

Let us now consider in detail the consequences of the covariant current conservation 
identity (1.6). Substituting the assumed form (1.1) of the current into (1.6) yields the 
evolution equation 

We are interested in the evolution of the gauge invariant isocharge scalar 

Q( T )  Q" ( T)@" ( R " ( T )  ) . (2.2) 
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At the present level of approximation, Q( T )  changes along the worldline r( 7 )  at the rate 

(2.3) 

Combining equations (1.19)-( 1.23) and (2.1)-(2.3), one obtains 

+-d ,  - (2.4) _- dQ-[F( r ) ( l -  w(r ) ) ] l  QcVc+[F(r )w(r )  (F!r))]l R'R4V"Q'. 
dT r r r2 r r 

Consider now a source whose distance of closest approach to the origin satisfies 1/ b << 1 
(in conventional units, 1/(  bFg) << 1). Our first main result now follows from substitution 
of the asymptotic forms (1.11) and (1.12) into the isocharge evolution equation (2.4) 
and expansion in 1/ b. We distinguish the cases A = 0 (Prasad-Sommerfield [ 161 and 
A # 0. For A # 0, 

d Q  -- O[exp(-l/b), exp(-J2h b ) / b ] O ( ~ ) .  
dr 

According to equation (2.5), for any motion confined to the region b >> 1, the scalar 
isocharge remains constant up to exponentially small corrections. For A = 0, 

and in this case the scalar isocharge is subject to changes that fall off only as 1/ b2. 
Notice, however, that in both cases ( A  = 0, A # 0) the leading terms of equation (2.4), 
which are of O( 1/ b), vanish. 

3. Vanishing net change of isocharge in linear motion 

We next consider the case of forced uniform straight-line motion for any impact 
parameter b. We orient our coordinate system such that the particle is moving along 
the z direction in the xz plane. The worldline r(7) is specified by 

Substituting the assumed motion (3.1) into the isocharge evolution equation (2.1), 
we obtain the following system: 

dQ" W 
dT R 

vby2Q' -- - -- (3.4) 

- 0  -- dQY 
d r  (3.5) 

dQz W 
dT R - vby2Q" 
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with the general solution 

Q" = A COS 0 

Q' = constant 

Q' = A sin 8 

Choosing the initial time such that T ~ =  0, we note that QX(7) and Q'(T) are even and 
odd functions, respectively, of the proper time. Substituting the above into the evolution 
equation (2.4) for the scalar isocharge, we obtain 

-- dQ- A{sin O[ h(  R ) u ~ T ~  y 2  +f( R ) o y ]  + cos O [ h (  R)bo2  y 3 7 ]  
d7 

where 

f( R )  = F(  R ) (  - W (  R ) )  
R 

F ( R ) W ( R )  1 a F ( R )  +-- - 
h ( R ) =  R 2  R a R (  R ) *  

(3.11) 

(3.12) 

(3.13) 

From equation (3.11) it is evident that dQ1d.r is an odd function of T, and therefore 
the net change: 

(3.14) 

vanishes. 

4. Secular evolution of scalar isocharge in circular motion 

Consider now the case of forced uniform circular motion. The position and four- 
velocity vectors are thus assumed to take the form 

R lr = ( t, R ) = ( y ~ ,  R?) 

Vlr = y( 1, U )  = y (  1, w R 4 )  

( R  =constant) 

where (?, 8, ;) is a right-handed system of cylindrical coordinates. In this case, the 
second term in equation (2.4) vanishes. Defining 

Q = Q'?+ Qq4 + 0'; 
we then obtain 

(4.5) 
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Equation (4.6) becomes in component form 

-- dQ'- RyW(R)wQ' 
d r  

dQ' ---= -RyW(R)wQ' 
d r  

-= dQz 0. 
d r  

The relevant component Q' has the solution 

Q' = Qo sin[ R W( R)cp] ( Qo = constant) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

where an arbitrary phase has been chosen equal to zero. Substituting equation (4.10) 
into the scalar isocharge evolution equation (2.4) and rewriting in terms of the 
azimuthal angle cp gives 

(4.11) dQ 
dcp 
- = Rf( R)Qo sin[ R W( R)cp] 

Q = QI - 00 W(R) cos[RW(R)cp] ( Q1 = constant) (4.12) 

where f ( R )  was defined in equation (3.12). 

and (4.12) are 
The asymptotic forms of the functions f /  W and R W appearing in equations (4.1 1) 

(4.13) 

RW-1-A,Rexp(-R).  (4.14) 

The amplitude of the oscillating term falls off like R exp( - R )  for R + 03. However, 
if R = O(l) ,  i.e. near the 'core' of the monopole, the scalar isocharge undergoes 
oscillations of relative order unity. Similarly, since for R >> 1 the frequency R W  is 
nearly unity, the phase of the oscillations can be thought of, in that case, as undergoing 
a small secular shift proportional to R exp(-R) per revolution. For R =0(1), this 
phase shift is of the order of unity. 

5. Conclusions 

We have introduced a scalar, gauge-invariant quantity Q( r )  (given by equation (2.2)) 
associated with a point-like isocharge in classical Yang-Mills-Higgs theory, and we 
have examined the evolution of Q( r )  in the presence of an 'tHooft-Polyakov monopole. 
If the point charge creates a weak disturbance (141 << l /g),  then we arrive at the following 
results, to lowest order in the small parameter E associated with the weakness of the 
disturbance. 

(i) If the distance of closest approach b satisfies l/(bgF)cc 1, then dQ/d r  vanishes 
to leading order in l /(bgF),  the precise result being given by equations (2.5) and (2.6), 
respectively, for the cases A # 0, A = 0, where r is the proper time and A is the magnitude 
of the Higgs potential appearing in the Lagrangian (1.2). 
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(ii) For forced straight-line motion (not necessarily in the far field of the monopole), 
we have calculated Q ( T )  and find that A Q =  Q(m)- Q(-oo) vanishes. 

(iii) For the case of forced uniform circular motion with radius R, Q evolves 
sinusoidally, exhibiting a secular advanced in phase (analogous to the precession of 
the perihelion of an orbiting body in general relativity) that depends strongly on R. 
The amplitude and secular advance of Q are significant only if R = 0(1/(  f g ) ) ,  i.e. in 
the core region of the monopole. 

It is interesting to note that uniform circular motion is also a reasonable approxima- 
tion to the unforced motion of an isocharge in the field of a Julia-Zee dyon [18] for 
the case in which the charge parameter yo satisfies yo >> 1 .  The above procedure could 
be carried out with little modification. 

Our results complement and augment those of Drechsler [ 1,3,4], Havas [3,4], 
Kates [2] and Rosenblum [3,4] in the sense that the present paper gives a definite 
answer in a specific problem to the question of whether or not a gauge-invariant 
measure of isocharge is necessarily constant in classical Yang-Mills-Higgs theories. 
For our definition of gauge-invariant isocharge, the answer is evidently no. We note 
that Marciano and Muziwich [ 191 also obtained results consistent with isocharge 
changing in the field of a monopole for the case of test Dirac fields. 

In a future paper, the time-odd effects on Q( T) associated with radiation reaction 
will be considered. 
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